Abstract

Noxious stimuli activate small to medium-sized dorsal root ganglion (DRG) neurons. Intense noxious stimuli result in the release of substance P (SP) from the central terminals of these neurons. It binds to the neurokinin type 1 receptor (NK1r) and sensitises the dorsal horn neurons. SP is also released from the peripheral terminals leading to neurogenic inflammation. However, their individual contribution at spinal and peripheral levels to postincisional nociception has not been delineated as yet. Sprague-Dawley rats were administered different doses (3-100 μg) of an NK1r antagonist (L760735) by intrathecal (i.t.) route before hind paw incision. On the basis of its antinociceptive effect on guarding behaviour, the 30 μg dose was selected for further study. In different sets of animals, this was administered i.t. (postemptive) and intrawound (i.w.). Finally, in another group, drug (30 μg) was administered through both i.t and i.w. routes. The antinociceptive effect was assessed and compared. Expression of SP was examined in the spinal cord. Intrawound concentration of SP and inflammatory mediators was also evaluated. Postemptive i.t. administration significantly attenuated guarding and allodynia. Guarding was alone decreased after i.w. drug treatment. Combined drug administration further attenuated all nociceptive parameters, more so after postemptive treatment. Expression of SP in the spinal cord decreased post incision but increased in the paw tissue. Inflammatory mediators like the nerve growth factor also increased after incision. In conclusion, SP acting through the NK1r appears to be an important mediator of nociception, more so at the spinal level. These findings could have clinical relevance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call