Abstract
Kainate receptors play fundamental roles in regulating synaptic transmission and plasticity in central nervous system and are regulated by their cognate auxiliary subunits Neuropilin and tolloid-like proteins 1 and 2 (Neto). While electrophysiology-based insights into functions of Neto proteins are known, biophysical and biochemical studies into Neto proteins have been largely missing till-date. Our biochemical, biophysical, and functional characterization of the purified extracellular domain (ECD) of Neto1 shows that Neto1-ECD exists as monomers in solution and has a micromolar affinity for GluK2 receptors in apo state or closed state. Remarkably, the affinity was ~2.8 fold lower for receptors trapped in the desensitized state, highlighting the conformation-dependent interaction of Neto proteins with kainate receptors. SAXS analysis of Neto1-ECD reveals that their dimensions are long enough to span the entire extracellular domain of kainate receptors. The shape and conformation of Neto1-ECD seems to be altered by calcium ions pointing towards its possible role in modulating Neto1 functions. Functional assays using GluK2 receptors and GluK2/GluA2 chimeric receptors reveal a differential role of Neto1 domains in modulating receptor functions. Although the desensitization rate was not affected by the Neto1-ECD, the recovery rates from the desensitized state are altered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.