Abstract

Spinal cord injury (SCI), a complex neurological disorder, triggers a series of devastating neuropathological events such as ischemia, oxidative stress, inflammatory events, neuronal apoptosis, and motor dysfunction. However, the classical necrosome, which consists of receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like protein, is believed to control a novel type of programmed cell death called necroptosis, through tumour necrosis factor-alpha/tumour necrosis factor receptor-1 signalling or other stimuli. Several studies reported that necroptosis plays an important role in neural cell damage, release of intracellular pro-inflammatory factors, lysosomal dysfunction and endoplasmic reticulum stress. Recent research indicates that necroptosis is crucial to the pathophysiology of a number of neurological disorders and SCIs. In our review, we summarize the potential role of programmed cell death regulated by necroptosis in SCI based on its molecular and pathophysiological mechanisms. We also summarize the targets of several necroptosis pathways, which provide a more reliable reference for the treatment of SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.