Abstract

The purpose of this study was to determine the role of NaV 1.7 in action potential conduction in C-fibres in the bronchial branches of the human vagus nerve. Bronchial branches of the vagus nerve were dissected from human donor tissue. The C-wave of the electrically evoked compound action potential was quantified in the absence and presence of increasing concentrations of the selective NaV 1.7 blocking drugs, PF-05089771 and ST-2262, as well as the NaV 1.1, 1.2, and 1.3 blocking drug ICA121-431. The efficacy and potency of these inhibitors were compared to the standard NaV 1 blocker, tetrodotoxin. We then compared the relative potencies of the NaV 1 blockers in inhibiting the C-wave of the compound action potential, with their ability to inhibit parasympathetic cholinergic contraction of human isolated bronchi, a response previously shown to be strictly dependent on NaV 1.7 channels. The selective NaV 1.7 blockers inhibited the C-wave of the compound action potential with potencies similar to that observed in the NaV 1.7 bronchial contractions assay. Using rt-PCR, we noted that NaV 1.7 mRNA was strongly expressed and transported down the vagus nerve bundles. NaV 1.7 blockers can prevent action potential conduction in the majority of vagal C-fibres arising from human bronchi. Blockers of NaV 1.7 channels may therefore have value in inhibiting the responses to excessive airway C-fibre activation in inflammatory airway disease, responses that include coughing as well as reflex bronchoconstriction and secretions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call