Abstract

The electron magnetohydrodynamic (EMHD) model represents an incompressible electron fluid flow against a static neutralizing background ion species. In contrast to hydrodynamic fluid models the EMHD model contains intrinsic length (the electron skin depth) and time scale (the whistler period). The paper discusses the role of skin depth and the existence of whistler waves on a prominent fluid instability, namely, the velocity shear driven Kelvin–Helmholtz instability in the context of two-dimensional EMHD. Numerical simulations are also carried out to understand the role played by the whistler waves in the nonlinear saturated regime of the instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.