Abstract

Nanoparticles (NPs) possess specific physical and chemical features and they are capable enough to cross cellular barriers and show their effect on living organisms. Their capability to cross cellular barriers have been noticed for their application not only in medicine, electronics, chemical and physical sciences, but also in agriculture. In agriculture, nanotechnology can help to improve the growth and crop productivity by the use of various nanoscale products such as nanofertilizers, nanoherbicides, nanofungicides, nanopesticides etc. An optimized concentration of NPs can be administered by incubation of seeds, roots, pollen, isolated cells and protoplast, foliar spraying, irrigation with NPs, direct injection, hydroponic treatment and delivery by biolistics. Once NPs come in contact with plant cells, they are uptaken by plasmodesmatal or endocytosed pathways and translocated via apoplastic and / symplastic routes. Once beneficial NPs reach different parts of plants, they boost photosynthetic rate, biomass measure, chlorophyll content, sugar level, buildup of osmolytes and antioxidants. NPs also improve nitrogen metabolism, enhance chlorophyll as well as protein content and upregulate the expression of abiotic- and biotic stress-related genes. Herein, we review the state of art of different modes of application, uptake, transport and prospective beneficial role of NPs in stress management and crop improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.