Abstract
The metabolism, cytotoxicity, and genotoxicity of streptonigrin (SN) w ere determined in two human colon carcinoma cell lines: HT-29 with high NAD(P)H:quinone oxidoreductase (EC 1.6.99.2, DTD) activity and BE with undetectable DTD activity. Dicumarol-sensitive oxidation of NADH was observed with HT-29 cytosol, but not with BE cytosol. Oxygen consumption was also observed using HT-29 cytosol, but was absent with BE cytosol. Dicumarol inhibited oxygen consumption with HT-29 cytosol, but deferoxamine had no effect, suggesting that divalent metal cations were not necessary for efficient auto-oxidation of SN hydroquinone. In cytotoxicity studies, SN was much more toxic to the DTD-rich HT-29 cells than to the DTD-deficient BE cells. Deferoxamine decreased toxicity in both cell lines, implicating hydroxyl radicals produced during Fenton-type reactions as the toxic species. In the genotoxicity assay, SN induced a much higher incidence of DNA strand breaks in HT-29 cells than in BE cells, and deferoxamine protected against DNA strand breaks in both cell lines. Some evidence of DNA repair was also observed in the two cell lines. These results support an important role for DTD in the cytotoxicity of SN in the high DTD HT-29 colon carcinoma cell line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.