Abstract

Atherosclerosis is an inflammatory disease, occurring preferentially in branched or curved arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). In contrast, straight portions exposed to undisturbed laminar shear stress (LS) are relatively lesion free. The opposite effects of atheroprotective LS and proatherogenic OS are likely to be determined by differential expression of genes and proteins, including redox regulating factors. OS induces inflammation via mechanisms involving increased reactive oxygen species (ROS) production from the NADPH oxidases. Through a transcript profiling study and subsequent verification and functional studies, the authors discovered that OS induces inflammation by producing bone morphogenic protein 4 (BMP4) in endothelial cells. BMP4 stimulates expression and activity of NADPH oxidase requiring p47phox and Nox-1 in an autocrine-like manner. The NADPH oxidase activation by BMP4 then leads to ROS production, NF-kappaB activation, intercellular adhesion molecule 1 (ICAM-1) expression, and subsequent increased monocyte adhesivity of endothelial cells. It is proposed that endothelial NADPH oxidases play a critical role in disturbed flow- and BMP4-dependent inflammation, which is the critical early atherogenic response occurring in atheroprone areas. This emerging field of shear stress, BMP4, NADPH oxidases, inflammation, and atherosclerosis is reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.