Abstract

This study examined the hypothesis that the control of NADPH oxidase-2 (Nox2)-mediated reactive oxygen species (ROS) regulates the expression of matrix metalloproteinases (MMPs) and the migration of macrophages. Lipopolysaccharide (LPS) stimulation of Raw264.7 cells and mice peritoneal macrophages increased the expression of MMP-9, 10, 12 and 13 mRNA, and also increased Raw264.7 cell migration. Treatment with an antioxidant (N-acetyl cysteine) or Nox inhibitors strongly inhibited the expression of MMPs by LPS and inhibited cell migration. LPS caused ROS production in macrophages and increased the mRNA expression of Nox isoforms Nox1 and Nox2 by 20-fold and two-fold, respectively. While Nox1 small interfering RNA (siRNA) did not inhibit LPS-mediated expression of MMPs, Nox2 siRNA inhibited the expressions of MMP-9, 10 and 12. Neither Nox1 nor Nox2 siRNA influenced the LPS-mediated expression of MMP-13. In addition, NAC or apocynin attenuated LPS-induced ROS production and MMP-9 expression. MMP-9 expression and cell migration were controlled by ERK1/2-ROS signaling. Collectively, these results suggest that LPS stimulates ROS production via ERK and induce various types of MMPs expression and cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.