Abstract

The kinetic characterization of the Na/K/Cl cotransport of cultured astrocytes and evidence for its involvement in volume regulation and K+ net uptake during K+ clearance are reviewed. Emphasis is put on experimental evidence for a proposed sodium cycle in astrocytes; this cycle involves a Na(+)-K+ ATPase that is stimulated by both a high external K+ and intracellular Na+. Elevated external K+ also stimulates the Na/K/Cl carrier, transporting these ions inward. As a result Na+ is cycled across the membrane, carried inward by the Na/K/Cl carrier, and returned by the Na(+)-K+ ATPase. Both functionally coupled mechanisms lead to intracellular KCl accumulation and inward movements of water to compensate for increased osmolarity. The combined cycle is expected to play a major role in the regulation of physiological K+ levels in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.