Abstract

We studied whether Na+ and Ca2+ channels are involved in the neural mechanism responsible for the surge of gonadotropin-releasing hormone (GnRH) in proestrous rats. In experiment 1, female rats in proestrus were i.p. injected at 1345 h with pentobarbital sodium (35 mg/kg) to block spontaneous surge of LH and electrical stimulation was applied between 1400 and 1600 h to the preoptic area (POA) together with POA injection of 0.5 microl saline containing the Na+ channel blocker tetrodotoxin (TTX) at a concentration of 1 microM, 2 microM, or 5 microM. Since 5 microM TTX completely blocked the increase in serum LH concentrations evoked by the POA stimulation, we used this concentration in experiment 2 to observe the TTX effect on the spontaneous LH surge. In experiment 2, bilateral injections of 1.5 microl of 5 microM TTX at 1430 h in the POA in proestrous rats postponed the peak time and reduced the peak level of the LH surge. In experiment 3, bilateral injections of 1.5 microl of 5 microM L-type Ca2+ channel blocker nifedipine at 1430 h in the POA completely blocked the LH surge. Since the cell bodies of GnRH neurons are primarily concentrated in the POA in rats, these results suggest that both voltage-sensitive Na+ channels and Ca2+ channels contribute to the generation of action potentials at GnRH cell bodies for the surge release of GnRH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.