Abstract

In vitro experiments showing the activation of the myosin phosphatase via heterophilic leucine zipper interactions between its targeting subunit (MYPT1) and cGMP-dependent protein kinase I suggested a pathway for smooth muscle relaxation (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). The relationship between MYPT1 isoform expression and smooth muscle responses to cGMP signaling in vivo has not been explored. MYPT1 isoforms that contain or lack a C-terminal leucine zipper are generated in birds and mammals by cassette-type alternative splicing of a 31-nucleotide exon. The avian and mammalian C-terminal isoforms are highly conserved and expressed in a tissue-specific fashion. In the mature chicken the tonic contracting aorta and phasic contracting gizzard exclusively express the leucine zipper positive and negative MYPT1 isoforms, respectively. Expression of the MYPT1 isoforms is also developmentally regulated in the gizzard, which switches from leucine zipper positive to negative isoforms around the time of hatching. This switch coincides with the development in the gizzard of a cGMP-resistant phenotype, i.e. inability to dephosphorylate myosin and relax in response to 8-bromo-cGMP after calcium activation. Furthermore, association of cGMP-dependent protein kinase I with MYPT1 is detected by immunoprecipitation only in the tissue that expresses the leucine zipper positive isoform of MYPT1. These results suggest that the regulated splicing of MYPT1 is an important determinant of smooth muscle phenotypic diversity and the variability in the response of smooth muscles to the calcium desensitizing effect of cGMP signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.