Abstract

Myc is involved in cell growth, proliferation, apoptosis, energy metabolism, and differentiation. Whether it is essential for hepatocellular proliferation and carcinogenesis is unclear due to a lack of an efficient hepatocyte-specific Myc disruption model. This study used a novel genetic model to investigate the involvement of Myc in hepatocellular proliferation and hepatocarcinogenesis in mice. Temporal hepatocyte-specific Myc disruption was achieved by use of the tamoxifen-inducible Cre-ER(T2) recombinase system under control of the serum albumin promoter. Hepatocyte proliferation was assessed by administering peroxisome proliferator-activated receptor α (PPARα) agonist Wy-14,643. A diethylnitrosamine-induced liver cancer model was used to evaluate the role of Myc in hepatocarcinogenesis. Tamoxifen administration induced recombination of Myc specifically in hepatocytes of Myc(fl/fl,ERT2-Cre) mice. When treated with a known hepatocellular proliferative stimulus Wy-14,643, Myc(fl/fl,ERT2-Cre) mice showed a lower liver/body weight ratio and suppressed hepatocyte proliferation as compared to Myc(fl/fl) mice. Hepatic expression of cell cycle control genes, DNA repair genes, and Myc target gene miRNAs were upregulated in Wy-14,643-treated Myc(fl/fl) mouse livers, but not in Wy-14,643-treated Myc(fl/fl,ERT2-Cre) livers. However, no differences were observed in the lipid-lowering effect of Wy-14,643 between Myc(fl/fl,ERT2-Cre) and Myc(fl/fl) mice, consistent with no differences in the expression of several PPARα target genes involved in fatty acid β-oxidation. Moreover, when subjected to the diethylnitrosamine liver cancer bioassay, Myc(fl/fl,ERT2-Cre) mice exhibited a markedly lower incidence of tumor formation compared with Myc(fl/fl) mice. Myc plays an essential role in hepatocellular proliferation and liver tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.