Abstract

MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call