Abstract

Polypropylene can be improved an electrical conductivity by addition of carbon and multiwall carbon nanotube (MWCNT) as well as combination with copper (Cu) powder. Multiwall carbon nanotube used from 0.1 wt%, 0.5 wt% to 1 wt% while the addition of Cu powder into PP/C was various from 0.1 wt%, 0.2wt% to 0.5wt% respectively. This research focuses on material design of composite based on polymer and carbon to improve an electrical conductivity according to electrical conductivity requirement for bipolar plate. Bipolar plate is one of the components in PEMFC constituted a crucial component that collects and transfers electron from the anode to the cathode, therefore it should possess high electrical conductivity. The main discussion in this research is to analyze the role of multiwall carbon nano tube (MWCNT) and copper on electrical conductivity of polymer composites produced. Functional groups analysis using Fourier Transform Infrared Spectroscopy (FTIR) was also carried out to investigate whether carbon has been mixed perfectly within polypropylene. It is found that the effect of adding a small amount of MWCNT and Cu have improved their electrical conductivity of composites up to 15.62 S/cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call