Abstract
The role of multiple soliton and breather interactions in the formation of very high waves is disclosed within the framework of the integrable modified Korteweg-de Vries (MKdV) equation. Optimal conditions for the focusing of many solitons are formulated explicitly. Namely, trains of ordered solitons with alternate polarities evolve to huge strongly localized transient waves. The focused wave amplitude is exactly the sum of the focusing soliton heights; the maximum wave inherits the polarity of the fastest soliton in the train. The focusing of several solitary waves or/and breathers may naturally occur in a soliton gas and will lead to rogue-wave-type dynamics; hence, it represents a new nonlinear mechanism of rogue wave generation. The discovered scenario depends crucially on the soliton polarities (phases), and is not taken into account by existing kinetic theories. The performance of the soliton mechanism of rogue wave generation is shown for the example of the focusing MKdV equation, when solitons possess "frozen" phases (certain polarities), though the approach is efficient in some other integrable systems which admit soliton and breather solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.