Abstract

Gene Regulatory Networks (GRNs) are biological networks that have been widely studied for their ability to regulate protein synthesis in cells by robust signal propagation. The innate biological robustness of GRN is attributed to the occurrence of statistically significant subgraphs, called motifs. While Wireless Sensor Network (WSN) topologies designed using GRN graphs, called bio-WSNs, have been proven to exhibit significant improvement in packet delivery and network latency over random graph-based WSNs, it is still not clear what role motifs play in the observed performance improvement of bio-WSNs. This work explores why a dominant 3-node motif, called Feed Forward Loop (FFL), typifies the robustness of GRN motifs. We also employ graph centrality metrics to corroborate biological studies that have shown motifs to provide pathways for signal propagation in GRNs. Finally, we perform graph-theoretic and simulation experiments on GRN subgraphs and their corresponding bio-WSNs to demonstrate that nodes with high FFL motif participation offer multiple short and robust communication pathways, despite the failure of random and targeted nodes and links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.