Abstract

We study the role of magnetic monopoles at high enough temperature $T>2{T}_{c}$, when they can be considered heavy, rare objects embedded into matter consisting mostly of the usual ``electric'' quasiparticles, quarks, and gluons. We review available lattice results on monopoles at finite temperatures. Then we proceed to classical and quantum charge-monopole scattering, solving the problem of gluon-monopole scattering for the first time. The explicit calculations are performed in the framework of the Georgi-Glashow model; the results that we obtain are nevertheless quite general. Connections to QCD are carefully discussed. We find that, while the gluon-monopole scattering hardly influences thermodynamic quantities, it does produce a large transport cross section, significantly exceeding that for pQCD gluon-gluon scattering up to quite high $T$. Thus, in spite of their relatively small density at high $T$, monopoles are extremely important for quark-gluon plasma transport properties, keeping viscosity small enough for hydrodynamics to work at the LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.