Abstract

3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit bath salts products, and in vitro studies implicate monoamine transporters as mediators of its pharmacological effects. Locomotor and thermoregulatory effects of MDPV depend on ambient temperature, so the current studies aimed to gauge the involvement of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in MDPV-induced locomotor stimulation and hyperthermia in the mouse at different ambient temperatures. Mice were pretreated with the selective 5-HT-reuptake inhibitor fluoxetine (3 mg/kg), the NE-reuptake inhibitor desipramine (3 mg/kg), the DA-reuptake inhibitor bupropion (10 mg/kg), or saline, followed by 10 mg/kg MDPV while thermoregulation and locomotor activity were monitored via radiotelemetry. In other studies, mice were pretreated for three days with saline, 100 mg/kg of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (p-CPA), or 100 mg/kg of the tyrosine hydroxylase inhibitor α-methyl-para-tyrosine (α-MPT) before receiving 10 mg/kg MDPV on the fourth day. All manipulations were conducted at both 20 °C and 28 °C ambient temperatures. MDPV increased locomotor activity under both ambient conditions and modestly increased core body temperature at 20 °C; however, neither pretreatment with monoamine reuptake inhibitors nor monoamine synthesis inhibitors significantly altered these effects. At 28 °C, MDPV induced a more pronounced hyperthermic effect which was attenuated by bupropion, desipramine, or fluoxetine pretreatment, but not by the monoamine synthesis inhibitors. These results suggest that MDPV may have a more complex pharmacological profile than suggested by in vitro studies, perhaps extending beyond interactions with monoamine transporters. A more thorough binding profile of MDPV at various brain recognition sites should be developed.This article is part of the Special Issue entitled ‘Designer Drugs and Legal Highs.’

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.