Abstract
Abstract PbO-ZnF2-P2O5 glasses doped with different mol% (0.1 to 1.0) of MoO3 have been prepared. Dielectric properties ∊′(ω), tanδ, σAC, of the synthesized samples were calculated from frequency measurements versus temperature. Space charge polarization was used to analyze the temperature and frequency dispersions of dielectric constant ∊′(ω) and dielectric loss tanδ. Quantum mechanical tunneling model was employed to explain the origin of AC conductivity. The AC conductivity exhibited an increasing trend with increasing concentration of MoO3 (up to 0.2 mol%) but the activation energy for conduction decreased. The plots of AC conductivity revealed that the relaxation dynamics depends on MoO3 dopant concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.