Abstract

We show the importance of finite particle size in microfluidic asymmetric continuous-flow diffusion arrays, specifically the critical nature of the particle size with respect to the barrier gaps. We show that particles much smaller than the barrier gap follow individual field lines through narrow gaps and are poorly fractionated. In contrast, particles comparable to the gap size lose memory of their incoming field line and can be fractionated with high resolution. We demonstrate this effect using a new technological approach to create very straight and narrow injection bands in such arrays, and completely resolve bands of DNA of lengths 48,500 and 16,7000 base pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.