Abstract

The influence of molecular diffusion on gas-mixing during conventional mechanical ventilation (CMV) and high frequency ventilation (HFV) was studied by observing the wash-in of six poorly soluble, inert gases in arterial blood. Anesthetized dogs were ventilated either with CMV or HFV. Following a step change in inspired gas composition, the increase in arterial concentrations of hydrogen, helium, methane, ethane, isobutane, and sulfur hexafluoride was determined by gas chromatography. The relative gas diffusivities encompassed a range of almost one order of magnitude. Propane, present in inspired gas during both the control and wash-in phases, served as an internal reference for calculation of blood tracer concentrations. The wash-in of all six inert gases followed a single exponential time course during both CMV and HFV. The rate of wash-in of each gas decreased with increasing molecular weight (MW). The relationship of rate constants to a measure of relative diffusivity (MW-0.5) was significantly different than zero for both types of ventilation. The slope of this relationship was three times larger for CMV than HFV, indicating that molecular diffusion has a greater role in gas mixing during ventilation with large tidal volumes. Diffusion has a minor role in gas mixing during high frequency ventilation with small tidal volumes. Demonstration of the presence of gas separation secondary to molecular diffusion during HFV is enhanced by measuring wash-in, rather than wash-out, of inert gases because gas separation is likely to be obscured as exhaled gases pass through the well-mixed central airways during gas wash-out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.