Abstract
In order to gain an insight into the mechanism of antimicrobial peptide action, aurein 2.5 and modelin-5 were studied. When tested against Staphylococcus aureus, aurein 2.5 showed approximately 5-fold greater efficacy even though the higher net positive charge and higher helix stability shown by modelin-5 would have predicated modelin-5 to be the more effective antimicrobial. However, in the presence of S. aureus membrane mimics, aurein 2.5 showed greater helical content (75% helical) relative to modelin-5 (51% helical) indicative of increase in membrane association. This was supported by monolayer data showing that aurein 2.5 (6.6mNm−1) generated greater pressure changes than modelin-5 (5.3mNm−1). Peptide monolayers indicted that modelin-5 formed a helix horizontal to the plane of an asymmetric interface which would be supported by the even distribution of charge and hydrophobicity along the helical long axis and facilitate lysis by non-specific membrane binding. In contrast, a groove structure observed on the surface of aurein 2.5 was predicted to be the cause of enhanced lipid binding (Kd=75μM) relative to modelin-5 (Kd=118μM) and the balance of hydrophobicity along the aurein 2.5 long axis supported deep penetration into the membrane in a tilt formation. This oblique orientation generates greater lytic efficacy in high anionic lipid (71%) compared to modelin-5 (32%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.