Abstract

In this paper we describe the preparation and testing of a new class of chitosan-based flocculants for the treatment of surface waters containing antibiotic compounds. Three forms of moderately hydrophobic chitosan flocculants (MHCs) were prepared by chemically grafting hydrophobic branches with different lengths onto hydrophilic chitosan and these were evaluated by jar tests and a bench-scale continuous flow ultrafiltration (UF) membrane process with coagulation/sedimentation pre-treatment. Tests were conducted using both synthetic and real surface water in which norfloxacin and tylosin were added as representative antibiotics at an initial concentration of 0.1 μg/L. In jar tests, the MHCs achieved similar high removal efficiencies (REs) of turbidity and UV254 absorbance, but much higher REs of the two antibiotics (71.7–84.7% and 68.7–76.6% for synthetic and river waters, respectively), compared to several commercial flocculants; the superior performance was attributed to an enhanced hydrophobic interaction and H-bonding between the flocculants and antibiotics. The presence of suspended kaolin particles and humic acid enhanced the antibiotic removal, speculated to be through MHC bridging of the kaolin/humic acid and antibiotic molecules. In the continuous flow tests involving flocculation/sedimentation-UF for 40 days, an optimal MHC achieved a much greater performance than polyaluminium chloride in terms of the overall removal of antibiotics (RE (norfloxacin) of ∼90% and RE (tylosin) of ∼80%) and a greatly reduced rate of membrane fouling; the latter resulting from a more porous and looser structure of cake layer, caused by a surface-modification-like effect of residual MHC on the hydrophobic PVDF membrane. The results of this study have shown that MHCs offer a significant advance over the use of existing flocculants for the treatment of surface water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call