Abstract

Structural and thermal properties of \(x\hbox {MnO}-(100-x)\hbox {B}_{2}\hbox {O}_{3}\) (where \(x=40\), 50 and 60 mol%) glass samples have been investigated with the employment of various techniques. Fourier transform infrared spectroscopy results revealed the influence of MnO on glass matrix. Decrease of B–O bond-related band intensities has been observed. MnO addition was found to introduce broken [\(\hbox {BO}_{2}\hbox {O}^{-}\)]\(_{{n}}\) chains. Differential scanning calorimetry (DSC) measurements presented decreasing \(T_{\mathrm{g}}\) that indicates depolymerization of glass matrix in the considered compositional range. Moreover, thermal stability (TS) parameter has been evaluated using the DSC technique. It slightly decreased with MnO content. X-ray photoelectron spectroscopy results provided the evidence for \(\hbox {Mn}^{2+}\) and \(\hbox {Mn}^{3+}\) presence. Multiplet splitting, close to that of MnO, has been observed. It has been concluded that most of the manganese ions existed in the divalent state. Photoluminescence study revealed that manganese ions are tetragonally co-ordinated in a glassy matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.