Abstract
Treatment of bovine pulmonary artery smooth muscle with the O2 *- generating system hypoxanthine plus xanthine oxidase stimulated MMP-2 activity and PKC activity; and inhibited Na+ dependent Ca2+ uptake in the microsomes. Pretreatment of the smooth muscle with SOD (the O2 *- scavenger) and TIMP-2 (MMP-2 inhibitor) prevented the increase in MMP-2 activity and PKC activity, and reversed the inhibition of Na+ dependent Ca2+ uptake in the microsomes. Pretreatment with calphostin C (a general PKC inhibitor) and rottlerin (a PKCdelta inhibitor) prevented the increase in PKC activity and reversed O2 *- caused inhibition of Na+ dependent Ca2+ uptake without causing any change in MMP-2 activity in the microsomes of the smooth muscle. Treatment of the smooth muscle with the O2 *- generating system revealed, respectively, 36 kDa RACK-1 and 78 kDa PKCdelta immunoreactive protein profile along with an additional 38 kDa immunoreactive fragment in the microsomes. The 38 kDa band appeared to be the proteolytic fragment of the 78 kDa PKCdelta since pretreatment with TIMP-2 abolished the increase in the 38 kDa immunoreactive fragment. Co-immunoprecipitation of PKCdelta and RACK-1 demonstrated O2 *- dependent increase in PKCdelta-RACK-1 interaction in the microsomes. Immunoblot assay elicited an immunoreactive band of 41 kDa G(i)alpha in the microsomes. Treatment of the smooth muscle tissue with the O2 *- generating system causes phosphorylation of G(i)alpha in the microsomes and pretreatment with TIMP-2 and rottlerin prevented the phosphorylation. Pretreatment of the smooth muscle tissue with pertussis toxin reversed O2 *- caused inhibition of Na+ dependent Ca2+ uptake without affecting the protease activity and PKC activity in the microsomes. We suggest the existence of a pertussis toxin sensitive G protein mediated mechanism for inhibition of Na+ dependent Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle under O2 *- triggered condition, which is regulated by PKCdelta dependent phosphorylation and sensitive to TIMP-2 for its inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.