Abstract

The relationship between mitochondrial membrane permeability transition (MPT) and the toxic effects of the alkyl esters of p-hydroxybenzoic acid (parabens) has been studied in mitochondria and hepatocytes isolated from rat liver. MPT has been proposed as a common final pathway in acute cell death through mitochondrial dysfunction. In isolated mitochondria, propyl-paraben (0.1 to 0.5 mM) in the presence of Ca 2+ (50 μM) elicited a concentration-dependent induction of mitochondrial swelling dependent on MPT. This was prevented by pretreatment with a specific inhibitor of MPT, cyclosporin A (0.2 μM). For the other parabens tested, the induction of MPT depended on the relative elongation of alkyl side-chains in their molecular structure and was associated with the partition coefficients. In contrast, the induction caused by p-hydroxybenzoic acid was more potent than that of methyl- or ethyl-paraben. The pretreatment of freshly isolated hepatocytes with cyclosporin A (5 μM) and trifluoperazine (10 μM), which inhibit MPT in a synergistic manner, partially but not completely prevented propyl-paraben (1 mM; plus diazinon, 100 μM)-induced cell death, ATP loss, and decreased mitochondrial membrane potential. These results suggest that the onset of paraben-induced cytotoxicity is linked to mitochondrial failure dependent upon induction of MPT accompanied by the mitochondrial depolarization and depletion of cellular ATP through uncoupling of oxidative phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.