Abstract

BackgroundPathological changes, such as microglia activation in the hippocampus frequently occur in individuals with animal models of depression; however, they may share a common cellular mechanism, such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction. Mitochondria associated membranes (MAMs) are communication platforms between ER and mitochondria. This study aimed to investigate the role of intracellular stress responses, especially structural and functional changes of MAMs in depression. MethodsWe used chronic social defeat stress (CSDS) to mimic depression in C57 mice to investigate the pathophysiological changes in the hippocampus associated with depression and assess the antidepressant effect of electroacupuncture (EA). Molecular, histological, and electron microscopic techniques were utilized to study intracellular stress responses, including the ER stress pathway reaction, mitochondrial damage, and structural and functional changes in MAMs in the hippocampus after CSDS. Proteomics technology was employed to explore protein-level changes in MAMs caused by CSDS. ResultsCSDS caused mitochondrial dysfunction, ER stress, closer contact between ER and mitochondria, and enrichment of functional protein clusters at MAMs in hippocampus along with depressive-like behaviors. Also, EA showed beneficial effects on intracellular stress responses and depressive-like behaviors in CSDS mice. LimitationThe cellular specificity of MAMs related protein changes in CSDS mice was not explored. ConclusionsIn the hippocampus, ER stress and mitochondrial damage occur, along with enriched mitochondria-ER interactions and MAM-related protein enrichment, which may contribute to depression's pathophysiology. EA may improve depression by regulating intracellular stress responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.