Abstract

Chronic inflammatory bowel diseases (IBDs) are associated with differential expression of genes involved in inflammation and tissue remodelling. We surveyed the expression profile of apoptosis-related microRNAs by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in a dextran sulphate sodium (DSS) murine model of colitis. We found that miR-150 was strongly elevated, whereas c-Myb, a transcription factor and a target gene of miR-150, was significantly reduced in colon tissue after DSS treatment. Interestingly, elevation of miR-150 and down-regulation of c-Myb were also observed in human colon with active ulcerative colitis compared to the normal colon. Supporting the observation of DSS treatment inducing colonic cell apoptosis, Bcl-2, an anti-apoptotic protein known to be regulated by c-Myb, was reduced in colon tissue of DSS-treated mice. Furthermore, forced expression of pre-miR-150 in colonic epithelial HT29 cells strongly elevated miR-150 levels and decreased c-Myb and Bcl-2 levels, thus enhancing cell apoptosis induced by serum deprivation. Together, the present study presents the first evidence that miR-150 and its targeting of c-Myb may serve as a new mechanism underlying the colonic epithelial disruption in DSS-induced murine experimental colitis and in active human IBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.