Abstract

Soymilk fermented with 2 Lactobacillus casei strains were stored at various temperatures (80 °C, 4 °C, 24.8 °C and 37 °C) for 8 weeks and isoflavone concentration analysed at weekly intervals using RP-HPLC. The degradation of each isoflavone compound at each storage temperature was found to fit first order kinetic model. Aglycone as well as glucosides generally appeared to be stable during storage (P < 0.01) at the 4 storage temperatures. Aglycone forms had smaller degradation constants compared to glucosides at all storage temperature and in the presence of both microorganisms. Specifically, aglycones showed a unique trend of smaller degradation at lower storage temperatures (−80 °C and 4 °C) than at higher temperatures (24.8 °C and 37 °C). Glucoside genistin was least stable at all storage temperatures compared to other isoflavones in the fermented soymilk with each strain while aglycone daidzein was the most stable. L. casei 2607 in fermented soymilk stored at 4 °C after 8 weeks gave the least degradation for daidzein of a mere 3.78% loss from 9.53 to 9.17 ng/μL. L. casei 2607 showed greater hydrolytic potential than L. casei ASCC 290 as denoted by higher degradation of isoflavone glucosides in fermented soymilk at lower storage temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.