Abstract

ABSTRACT Numerous chemical reactions within clay sequences have been proposed to produce dissolved material for diagenesis of deeply-buried sands. However, reactions responsible for solubilizing inorganic and organic constituents in clays at intermediate depths, and their importance to sandstone diagenesis, have not been evaluated. Results from this study show that the processes of microbial organic-acid production (via fermentation) in clays and microbial organic-acid consumption (via sulfate reduction) in sands effectively link organic-rich clays to sandstone diagenesis in the Black Creek Formation of South Carolina. Diagenetic processes have resulted in the formation of 10 volume percent calcite cement, 0.1 volume percent authigenic pyrite, and 1.5 volume percent secondary porosity in Black Creek sands. However, the distribution of these diagenetic processes is not uniform, resulting in net destruction of porosity in some parts of the sand and net porosity enhancement in other parts. Mass balance-derived rates of microbial organic-acid production (10-5 mmole carbon 1-1 yr-1) and microbial CO2 production (4 10-5 mmole l-1 yr-1) show that microbial processes can account for all organic carbon in the calcite cements (at least 11% of carbonate carbon based on isotope-balance calculations), all observed authigenic pyrite, and all observed secondary porosity. These findings show that microbial processes can serve to link organic-rich clays with sandsto e diagenesis at intermediate depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.