Abstract

Biomass transformation of lignocellulose into compost offers ‘green’ technology for sustainable agricultural development. So far, biomass conversion into compost outweighs fossil resources and other conversational techniques due to the low production cost and environmental pollution reduction. Although composting has aesthetically been resorted to in the digestibility of lignocellulose biomass, its realization has keenly been directed towards adding chemical reagents. However, inclining massively to this treatment instigated research bias as microorganisms’ biomass digestibility remains mostly inadequate. Besides, proliferated growth and activities of microorganisms native to lignocellulose biomass are usually disrupted by chemical treatment. The microbial flora (fungi, bacteria, actinomycetes, archaea, and yeast) involved in composting synthesizes complex biocatalysts (enzymes) that are crucial for solubilizing the biopolymers of lignocellulose materials at a density of 1012 cells g-1. Filamentous fungi are by far excellent degraders of lignocellulose in nature. To adequately ensure sustainable lignocellulose digestibility, microbial engineers must subject research studies to surpassing conditions (feedstock formulation and management processes) suitable for inducing ligninolytic, cellulolytic, and hemicellulolytic enzymes. Hence, the state-of-the-art-method of this review provides insights that relate to mechanisms of microbial reactions on the digestibility of lignocellulose biomass during composting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.