Abstract

G-protein coupled metabotropic glutamate receptors (mGluRs) are important modulators of synaptic transmission in the mammalian CNS and have been implicated in various forms of neuroplasticity and nervous system disorders. Increasing evidence also suggests an involvement of mGluRs in nociception and pain behavior although the contribution of individual mGluR subtypes is not yet clear. Subtypes mGluR1 and mGluR5 are classified as group I mGluRs and share the ability to stimulate phosphoinositide hydrolysis and activate protein kinase C. The present study examined the role of group I mGluRs in nociceptive processing and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 10 anesthetized male monkeys (Macaca fascicularis) extracellular recordings were made from 20 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (BRUSH) and barely and substantially noxious (PRESS and PINCH, respectively) intensity were recorded before, during, and after the infusion of group I mGluR agonists and antagonists into the dorsal horn by microdialysis. Cumulative concentration-response relationships were obtained by applying different concentrations for at least 20 min each (at 5 microl/min). The actual concentrations reached in the tissue are 2-3 orders of magnitude lower than those in the microdialysis fibers (values in this paper refer to the latter). The group I antagonists were also applied at 10-25 min after capsaicin injection. S-DHPG, a group I agonist at both mGluR1 and mGluR5, potentiated the responses to innocuous and noxious stimuli (BRUSH > PRESS > PINCH) at low concentrations (10-100 microM; n = 5) but had inhibitory effects at higher concentrations (1-10 mM; n = 5). The mGluR5 agonist CHPG (1 microM-100 mM; n = 5) did not potentiate but inhibited all responses (10-100 mM; n = 5). AIDA (1 microM-100 mM), a mGluR1-selective antagonist, dose-dependently depressed the responses to PINCH and PRESS but not to BRUSH (n = 6). The group I (mGluR1 > mGluR5) antagonist CPCCOEt (1 microM-100 mM) had similar effects (n = 6). Intradermal injections of capsaicin sensitized the STT cells to cutaneous mechanical stimuli. The enhancement of the responses by capsaicin resembled the potentiation by the group I mGluR agonist S-DHPG (BRUSH > PRESS > PINCH). CPCCOEt (1 mM) reversed the capsaicin-induced sensitization when given as posttreatment (n = 5). After washout of CPCCOEt, the sensitization resumed. Similarly, AIDA (1 mM; n = 7) reversed the capsaicin-induced sensitization and also blocked the potentiation by S-DHPG (n = 5). These data suggest that the mGluR1 subtype is activated endogenously during brief high-intensity cutaneous stimuli (PRESS, PINCH) and is critically involved in capsaicin-induced central sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.