Abstract

BackgroundThe dose-limiting toxic effect of cyclophosphamide (CY) is cardiotoxicity. The pathogenesis of myocardial damage is poorly understood, and there is no established means of prevention. In previous studies, we suggested that for CY-induced cardiotoxicity, whereas acrolein is the key toxic metabolite, carboxyethylphosphoramide mustard (CEPM) is protective. We sought to verify that acrolein is the main cause of cardiotoxicity and to investigate whether aldehyde dehydrogenase (ALDH), which is associated with greater CEPM production, is involved in the protective effect for cardiotoxicity. We also evaluated the protective effect of N-acetylcysteine (NAC), an amino acid with antioxidant activity and a known acrolein scavenger.MethodsH9c2 cells were exposed to CY metabolites HCY (4-hydroxy-cyclophosphamide), acrolein or CEPM. The degree of cytotoxicity was evaluated by MTT assay, lactate dehydrogenase (LDH) release, and the production of reactive oxygen species (ROS). We also investigated how the myocardial cellular protective effects of CY metabolites were modified by NAC. To quantify acrolein levels, we measured the culture supernatants using high performance liquid chromatography. We measured ALDH activity after exposure to HCY or acrolein and the same with pre-treatment with NAC.ResultsExposure of H9c2 cells to CEPM did not cause cytotoxicity. Increased ROS levels and myocardial cytotoxicity, however, were induced by HCY and acrolein. In cell cultures, HCY was metabolized to acrolein. Less ALDH activity was observed after exposure to HCY or acrolein. Treatment with NAC reduced acrolein concentrations.ConclusionsIncreased ROS generation and decreased ALDH activity confirmed that CY metabolites HCY and acrolein are strongly implicated in cardiotoxicity. By inhibiting ROS generation, increasing ALDH activity and decreasing the presence of acrolein, NAC has the potential to prevent CY-induced cardiotoxicity.

Highlights

  • The dose-limiting toxic effect of cyclophosphamide (CY) is cardiotoxicity

  • Myocardial cytotoxicity induced by HCY and acrolein Assay results for MTT showed that exposures to CY, carboxyethylphosphoramide mustard (CEPM) or 10 μM acrolein did not induce cytotoxicity

  • Cardiotoxicity induced by CY is dose-dependently related to the presence of HCY and acrolein

Read more

Summary

Introduction

The dose-limiting toxic effect of cyclophosphamide (CY) is cardiotoxicity. We suggested that for CY-induced cardiotoxicity, whereas acrolein is the key toxic metabolite, carboxyethylphosphoramide mustard (CEPM) is protective. We sought to verify that acrolein is the main cause of cardiotoxicity and to investigate whether aldehyde dehydrogenase (ALDH), which is associated with greater CEPM production, is involved in the protective effect for cardiotoxicity. Administration of posttransplantation CY (PTCy) in high doses has been attracting attention as a novel strategy for preventing graft-versus-host disease (GVHD) [2, 3]. AldoCY may, through the chemical process of β-elimination, decompose to form cytotoxic phosphoramide mustard (PM) and byproduct acrolein, or may be mediated by aldehyde dehydrogenase (ALDH), to inactive metabolite o-carboxyethyl-phosphoramide mustard (CEPM) [4, 5] (Fig. 1). On the basis of postmortem examination, the pathophysiology of highdose CY-associated cardiac toxicity is thought to depend

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.