Abstract

AbstractPhotovoltaic performance of dye sensitized solar cell (DSSC) was enhanced by 19 and 69 % compared to untreated DSSC by treating the nanoporous titanium dioxide (TiO2) by ultra thin Aluminum oxide (Al2O3) and Hafnium oxide (HfO2) grown by atomic layer deposition method. Activation energy of dark current, obtained from the temperature dependent current-voltage (I-V-T), of the untreated DSSC was 1.03 eV on the other hand the DSSCs with Al2O3 and HfO2 surface treatment showed 1.27 and 1.31 eV respectively. A significant change in the activation energy of dark current, over 0.24 eV for Al2O3 treatment and 0.28 eV in case of HfO2 treatment, suggest that density and activity of surface states on nanoporous TiO2 was suppressed by ALD grown metal oxides to result improved photovoltaic performance. Further the enhanced DSSC performance was confirmed by external quantum efficiency measurement in the wavelength range of 350-750 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call