Abstract

The physiology of smooth muscle and endothelial cells of a particular vascular bed and from different species differs from each other. Acetylcholine causes an endothelium-dependent relaxation of preconstricted pulmonary arteries from the rat. This relaxation is mediated by nitric oxide (NO) plus a yet-unidentified endothelium-derived hyperpolarizing factor, which relaxes the smooth muscles by hyperpolarizing them. Our aim is to test whether these observations could be generalized to the smooth muscle cells from the mouse pulmonary artery. Smooth muscle or endothelial cell membrane potential of strips of murine pulmonary artery were measured simultaneously with the force developed by the strip. Acetylcholine hyperpolarized the endothelial cells. However, acetylcholine did not induce an endothelium-dependent hyperpolarization of the smooth muscle, while it relaxed the strip in an endothelium-dependent manner. This relaxation was abolished by an inhibitor of NO synthesis, nitro-L-arginine. Moreover, nitroglycerin relaxed the strips without changing the membrane potential of the smooth muscle cells. Injection of Lucifer yellow into the endothelial cells and the smooth muscle cells did not show heterocellular dye coupling. Furthermore, electron microscopy did not show gap junction plate at the myoendothelial junctions. We conclude that in the mouse main pulmonary artery, NO alone is responsible for the acetylcholine-induced endothelium-dependent vasodilatation, whereas the phenomenon called endothelium-derived hyperpolizing factor is not present. Therefore, caution should be taken when comparing different animal models to study pulmonary circulation and its reactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call