Abstract

Photosystem II fluorescence of barley chloroplasts has been monitored to understand the role of membrane organization in the cation mediated regulation of excitation energy transfer from photosystem II to photosystem I. Membrane organization has been perturbed by adding 60 mM benzyl alcohol which is known to increase the membrane fluidity and decrease its thickness. An addition of 60 mM benzyl alcohol increases the fluorescence at 683 nm (excitation at 436 mn) by 43% whereas 5 mM Mg+2 increased the fluorescence by 38%. An addition of 5 mM Mg+2 to benzyl alcohol treated chloroplasts resulted in only a small increase in the fluorescence (6.5%). Circular dichroic measurements showed that 5 mM Mg+2 decreased the circular dichroic signals suggesting an alteration in the orientation of the chromophores. However, the effect was insignificant on the benzyl alcohol treated chloroplast membranes. Benzyl alcohol itself had large effect on the circular dichroic signals. Based on these results, it appears that a change in the orientation of photosystem I and photosystem II, rather than their segregation, is responsible for the cation-induced increase in the photosystem II fluorescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.