Abstract

We describe here a comprehensive study on the effect of cellular structure and melt pool boundary (MPB) condition on the mechanical properties, deformation and failure behavior of AlSi10Mg alloy processed by selective laser melting (SLM). The morphology of melt pool (MP) on the load bearing face of tensile samples was significantly different with build directions. It resulted in different mechanical properties of the samples with different build directions. Furthermore, the microstructure analysis revealed that the MP in the SLM AlSi10Mg alloy mainly consisted of columnar α-Al grains which were made of ultra-fine elongated cellular structure. Electron back-scatter diffraction (EBSD) analysis revealed that the long axis of cellular structure and columnar grains were parallel to < 100 >, which resulted in < 100 > fiber texture in SLM AlSi10Mg alloy. However, Schmid factor calculation demonstrated that the anisotropy of mechanical properties of the SLM AlSi10Mg alloy built with different direction was mainly dependent on the distribution of MPB on the load bearing face, and not texture. The defects including pores, residual stress and heat affected zone (HAZ) located at MPB made it the weakest part in the SLM AlSi10Mg. The sample built along horizontal direction exhibited good combination of strength and plasticity and is attributed to the lowest fraction of MPBs that withstand load during tensile. MPB had strong influence on the mechanical properties and failure behavior of SLM AlSi10Mg built with different directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call