Abstract

<p>The frequency of precipitation extremes is set to change in response to a warming climate. Thereby, the change in precipitation extreme event occurrence is influenced by both a shift in the mean and a change in variability. How large the individual contributions from either of them (mean or variability) to the change in precipitation extremes are, is largely unknown. This is however relevant for a better understanding of how and why climate extremes change. The mechanisms behind a change in either the mean or the variability can thereby be very different.</p><p>For this study, two sets of forcing experiments from the regional CRCM5 initial-condition large ensemble are used. A set of 50 members with historical and RCP8.5 forcing as well as a 35-member (700 year) ensemble of pre-industrial natural forcing. The concept of the probability risk ratio is used to partition the change in extreme event occurrence into contributions from a change in mean climate or a change in variability.</p><p>The results show that the contributions from a change in variability are in parts equally important to changes in the mean, and can even exceed them. The level of contributions shows high spatial variation which underlines the importance of regional processes for changes in extremes. Further, the results reveal a smaller influence of the level of warming and level of extremeness on the individual contributions then the seasonality or temporal aggregation (3h, 24h, 72h). These results highlight the need for a better understanding of changes in climate variability to better understand the mechanisms behind changes in climate extremes.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call