Abstract

This work deals with the application of ultrasonic nondestructive evaluation for characterizing fiber-reinforced metal matrix composites. The method involved the use of a recently developed technique in which the fiber reinforcement acts as a reflector to incident ultrasonic shear waves. Single fiber and multifiber, single ply composites consisting of SiC fibers in several titanium alloy matrices were investigated. The ultrasonic images obtained were correlated with the results of metallographic characterization of the composites. The results showed that the ultrasonic response of the metal matrix composites is significantly influenced by the microstructure of the matrix through which the incident wave traverses. The general effects of matrix on ultrasonic wave propagation are reviewed, and the ultrasonic signals obtained from various SiC fiber-reinforced titanium alloy composites are discussed in terms of the scattering effects of matrix microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.