Abstract

Multiple sclerosis (MS) is a neurological autoimmune disorder of the central nervous system (CNS), characterized by recurrent episodes of inflammatory demyelination and consequent axonal deterioration. The hallmark of the disease is the demyelinated plaque, a hypocellular area characterized by formation of astrocytic scars and infiltration of mononuclear cells. Recent studies have revealed that both innate and adaptive immune cells contribute to the pathogenesis of MS and its experimental autoimmune encephalomyelitis (EAE) model. Here, we review the current understanding of the role of mast cells in the pathogenesis of MS and EAE. Mast cells may act at the early stage that promote demyelination through interactions among mast cells, neurons, and other immune cells to mediate neuroinflammation. Studies from EAE model suggest that mast cells regulate adaptive autoimmune responses, present myelin antigens to T cells, disrupt the blood-brain barrier, and permit the entry of inflammatory cells and mediators into the CNS. Depletion or limiting mast cells could be a new promising therapeutic target for MS and EAE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.