Abstract
Renal interstitial fibrosis is characterized by increased proliferation of fibroblasts and excessive accumulation of extracellular matrix. Mast cell tryptase has been implicated in the development of tissue fibrosis in skin and lungs. However, the significance of mast cell tryptase in human renal diseases has not been investigated. The potential role of mast cell-derived tryptase in the development of renal fibrosis was studied using immunohistochemical techniques and cultured human renal fibroblast cell lines. Semiquantitative immunostaining analysis of samples from 70 patients with several renal diseases, including IgA glomerulonephritis (GN) (n = 30), non-IgA GN (n = 5), membranous GN (n = 5), focal segmental glomerulosclerosis (n = 4), minor glomerular abnormalities (n = 5), lupus nephritis (n = 3), and acute or chronic tubulointerstitial nephritis (n = 18), revealed that the degree of renal interstitial fibrosis was well correlated with the number of infiltrating tryptase-positive mast cells (P < 0.01). Mast cells could not be detected in damaged glomeruli in any form of renal disease. [(3)H]Thymidine uptake experiments demonstrated that DNA synthesis by cultured renal fibroblasts was increased with the concentration of tryptase (0.5 to 5 nM) coincubated with heparin and was suppressed by coincubation with the protease inhibitors leupeptin and benzamidine hydrochloride. Tryptase alone also increased DNA synthesis by fibroblasts but exhibited less effectiveness, compared with the combination of tryptase and heparin. Conversely, heparin alone suppressed DNA synthesis by fibroblasts. Metabolic [(35)S]methionine-labeling experiments with cultured renal fibroblasts indicated that tryptase increased the synthesis of fibronectin and collagen type I, in a dose-dependent manner. These findings suggest that mast cell tryptase plays a role in the proliferation and extracellular matrix protein production of renal interstitial fibroblasts and thus contributes to the development of renal interstitial fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.