Abstract

The brain-derived neurotrophic factor (BDNF) plays a critical role in pain hypersensitivity. BDNF is the ligand of P2X4 receptors (P2X4R) in the microglia. The causative factors involving the P2X4R over expression in the microglia remains unclear. Mast cell activation has a close relation with pain hypersensitivity. However, the underlying mechanism between mast cell activation and pain hypersensitivity is unknown. The present study aimed to elucidate the mechanism by which mast cell activation promoted the expression of P2X4R in the microglia. The results of present study showed that mast cell activation markedly promoted the expression of P2X4R and BDNF in microglial cells, which significantly enhanced the release of BDNF from microglial cells upon exposure to adenosine triphosphate. Mast cell-derived tryptase activated PAR2 that resulted in promoting the expression of P2X4R in microglial cells. Pretreatment with antibodies against tryptase or PAR2, or using tryptase-deficient HMC-1 cells or PAR2-deficient microglial cells abolished the increase in P2X4R expression and BDNF release. Increase in mitogen activated protein kinase phosphorylation was observed in the processes of mast cell-induced BDNF release and P2X4R expression. We conclude that mast cell activation has the capacity to promote the expression of P2X4R and BDNF in microglial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.