Abstract

The process of hydrogen evolution during alkaline electrolysis of aqueous solutions is governed by mass transfer, growth of hydrogen bubbles and removal of hydrogen from the cathode. Two mechanisms are decisive for hydrogen removal: (i) hydrogen dissolved in the solution is carried off from the cathode surface by diffusion and convection, and (ii) gas bubbles are transported by a two- phase flow. The paper describes experiments to determine the local concentration of dissolved hydrogen and the void fraction of hydrogen bubbles in aqueous solutions. Measurements were performed in a flow channel by varying the height of the cathode (40–400mm), the current density (up to 6250Am−2) and the mean velocity of the electrolyte (up to 0.95 m s−1). Two operating regimes of the electrolyser are found. At high current densities a back flow is observed leading to an increase in the electrolyte resistance. Traces of dissolved oxygen are detected at high current densities. At low current densities the two-phase flow is confined to a thin layer along the cathode surface, the concentration of dissolved hydrogen being small.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.