Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is postulated to regulate the passage of secretory granules through cortical actin in the early phase of exocytosis. There are, however, three proposed mechanisms of action, all of which were derived from studies using synthetic peptides representing either the central phosphorylation site domain or the upstream, NH2-terminal domain: it tethers actin to the plasma membrane and/or to secretory granules, and/or it sequesters PIP2. Using MARCKS-null mice, we probed for a loss of function secretory phenotype in mast cells harvested from embryonic livers and maturated in vivo [embryonic hepatic-derived mast cells (eHMCs)]. Both wild-type (WT) and MARCKS-null eHMCs exhibited full exocytic responses upon FcϵRI receptor activation with DNP-BSA (2,4-dinitrophenyl-BSA), whether they were in suspension or adherent. The secretory responses of MARCKS-null eHMCs were consistently higher than those of WT cells, but the differences had sporadic statistical significance. The MARCKS-null cells exhibited faster secretory kinetics, however, achieving the plateau phase of the response with a t½ ∼2.5-fold faster. Hence, MARCKS appears to be a nonessential regulatory protein in mast cell exocytosis but exerts a negative modulation. Surprisingly, the MARCKS NH2-terminal peptide, MANS, which has been reported to inhibit mucin secretion from airway goblet cells (Li Y, Martin LD, Spizz G, Adler KB. J Biol Chem 276: 40982-40990, 2001), inhibited hexosaminidase secretion from WT and MARCKS-null eHMCs, leading us to reexamine its effects on mucin secretion. Results from studies using peptide inhibitors with human bronchial epithelial cells and with binding assays using purified mucins suggested that MANS inhibited the mucin binding assay, rather than the secretory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.