Abstract
Manganese superoxide dismutase (MnSOD) is known to play a role in cancer. MnSOD exerts a tumor suppressive effect in estrogen-dependent human breast cancer cells. In the present study we investigated the in vitro role of MnSOD in the growth of some aggressive and highly metastatic estrogen-independent breast cancer cells, i.e., MDA-MB231 and SKBR3 cells. We show that estrogen-independent cells expressed a significantly higher basal MnSOD level compared to estrogen-dependent human breast cancer cell lines (MCF-7 and T47D). For MDA-MB231 cells, the high-MnSOD level was accompanied by an overproduction of intracellular hydrogen peroxide (H2O2) and by a low expression of the major H2O2-detoxifying enzymes, catalase, and peroxiredoxin 3, compared to MCF-7 cells. Suppression of MnSOD expression by antisense RNA was associated with a decrease of H2O2 content and caused a stimulation of growth with a reduced cell doubling time but induced a decrease of colony formation. Furthermore, treatment of MDA-MB231 cells with H2O2 scavengers markedly reduced tumor cell growth and colony formation. In addition, MnSOD suppression or treatment with H2O2 scavengers reduced the invasive properties of MDA-MB231 cells up to 43%, with a concomitant decrease of metalloproteinase-9 activity. We conclude that MnSOD plays a role in regulating tumor cell growth and invasive properties of estrogen-independent metastatic breast cancer cells. These action are mediated by MnSOD-dependent H2O2 production. In addition, these results suggest that MnSOD up-regulation may be one mechanism that contributes to the development of metastatic breast cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.