Abstract
MALT lymphoma-translocation protein 1 (Malt1) protease activity is triggered by stimulation of various immune receptors. Activation of Malt1 protease induces cleavage of negative regulators for immune responses, resulting in lymphocytes activation. Although Malt1 protease mediates the signaling process downstream of the T cell, B cell, and dectin receptors, its contribution in Fcγ receptor (FcγR) signaling has not been elucidated. In this study, we investigated the role of Malt1 protease activity in FcγR signaling using Malt1 protease-deficient (PD) mouse. In addition, role of Malt1 protease for the development of FcγR-mediated autoimmune disease was also investigated in vivo. Malt1 protease cleaves their substrates, such as RelB and cylindromatosis (CYLD). However, the Malt1 proteolytic activity was silenced in the Malt1 PD mice. Production of inflammatory cytokines via FcγR stimulation was decreased on dendritic cells prepared from Malt1 PD mice. In FcγR-dependent murine immune thrombocytopenia (ITP) model, gene expressions of the inflammatory cytokines in the spleen of Malt1 PD mice were lower than those of WT mice. Then, Malt1 PD mice protected the development of thrombocytopenia. These results clearly figured out that Malt1 protease activity plays an important role in the activation of innate immune cells via FcγR, and the development of FcγR-mediated autoimmune diseases. Therefore, Malt1 is an attractive target for the treatment of inflammatory diseases mediated by FcγR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.