Abstract

The temperature-dependent solubility of Cu in $\ensuremath{\alpha}$-Fe and initial stages of Cu precipitation are investigated in first-principles calculations and statistical thermodynamic and kinetic modeling based on ab initio effective interactions. We demonstrate that the weakening of the phase separation tendency with increasing temperature, especially close to the magnetic phase transition, is related to the strong dependence of the ``chemical'' interactions on the global magnetic state. At the same time, our calculations demonstrate that the vibrational contribution obtained in the quasiharmonic approximation is relatively small for temperatures near the Curie point. The results of Monte Carlo simulations of Cu solubility and clustering are in good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.