Abstract

The role of magnetic reconnection in the dynamics of the Venus dayside ionopause is investigated. The dispersion relation of the resistive tearing mode for the asymmetric ionopause equilibrium is derived and solved. It is shown that typical signatures of this mode correspond to helical magnetic flux tubes (flux ropes) as observed by Pioneer Venus Orbiter. Nonlinear numerical MHD‐simulations were carried out in addition to the analytical investigations. The results of these simulations support our view that magnetic reconnection plays an essential role in the dynamic interaction of the solar wind with the Venus ionosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.