Abstract

The tribological performance of 5xxx series aluminum alloys with ternary zirconium is evaluated at ambient conditions under dry, wet and saline environment. The experiment has been done using a Pin-on-Disk apparatus under an applied load of 20N. The sliding distances varies ranging from 116m-2772m at a sliding velocity of 0.385 ms-1. The results show that presence of Mg and Zr into this alloy helps to increase their strength and wear resistance under dry sliding condition. But they significantly suffer under wet and corrosive environment due to formation of β-phase Al3Mg2, to slip bands and grain boundaries which may lead to and stress-corrosion cracking. The variation of friction coefficient is observed in wet and corrosive environment due to the formation of oxidation film, lubrication, and corrosion action in solution. The SEM fracture surface shows that brittle Al3Mg2 phase initiate the brittle fracture surface for Al-Mg alloy and Zr addition accelerate the brittleness of the alloy owing the fine precipitates of Al3Zr.

Highlights

  • Pure aluminum is soft, ductile, corrosion resistant and has a high electrical conductivity [1, 2]

  • Titanium, zirconium, scandium, lead, bismuth and nickel are made and iron is invariably present in small quantities [3,4,5].The addition of magnesium to aluminum increases the strength through solid solution strengthening and improves their strain hardening ability

  • Al-Mg casting alloys have a wide range of application, especially in the automotive and ship borne industry that is directly related to their good mechanical properties [9, 10]. These alloys are characterized by relatively good castability and are distinguished by excellent corrosion resistance due to high magnesium content [11, 12]

Read more

Summary

Introduction

Ductile, corrosion resistant and has a high electrical conductivity [1, 2]. Titanium, zirconium, scandium, lead, bismuth and nickel are made and iron is invariably present in small quantities [3,4,5].The addition of magnesium to aluminum increases the strength through solid solution strengthening and improves their strain hardening ability. Al-Mg casting alloys have a wide range of application, especially in the automotive and ship borne industry that is directly related to their good mechanical properties [9, 10] These alloys are characterized by relatively good castability and are distinguished by excellent corrosion resistance due to high magnesium content [11, 12]. Zirconium is added to aluminum alloys for altering recrystallization behavior, enhancing mechanical properties and thermal stability while retaining electrical conductivity and controlling

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call